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Bosonic systems in phase space

In classical physics the state of a physical object and its dynamics can gen-
erally be illustrated by a time dependent probability density in phase space.
The phase space is thereby spanned by the canonically conjugate variables as,
for example, the position 4 and momentum p of a particle. The phase-space
density P(gq, p, t) relates then to the probability dw at time ¢ of observing the
particle in the intervals dg and dp, centered around the values q and p, via the
typical expression dw="P(q, p, t)dgdp.

Whereas this is perfectly appropriate in classical physics one encounters
problems of interpretation in the quantum domain. Here Heisenberg’s un-
certainty relation AgAp>1/2 prohibits one to consider the knowledge (i.e.,
observation) of both canonical variables at the same time with arbitrary preci-
sion. Proper probability densities in phase space, which are based on orthogo-
nal projectors, may therefore be considered nonexistent. However, a complete
description of the quantum mechanical state can still be obtained in phase
space if one introduces phase-space functions in a wider sense. To do this, we
may first generalize our description of a quantum mechanical system in order
to include (classical) statistical uncertainties. This is readily obtained in terms
of the statistical density operator, which includes both quantum and classi-
cal uncertainties in the inference of the properties of the considered physical
object.

4.1
The statistical density operator

After the measurement of an observable with the observed outcome being O
we encode our inferred knowledge of the physical state of the measured object
in the form of the quantum state, which is chosen to be the eigenstate of the
associated Hermitian operator O with eigenvalue O. Clearly this represents
an idealized picture in that we assume a perfect detection of the observable.
However, in general we may release these constraints to also allow statistical
uncertainties in the measurement process itself. These uncertainties, being
of classical nature, restrict the knowledge or information that can be gained
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4 Bosonic systems in phase space

in a measurement, since now a range of values of O may correspond to the
measurement outcome.

To deal with such situations we have to incorporate classical statistics into
our quantum mechanical description of the inferred state of a quantum me-
chanical object. Most naturally this is performed by turning to the statistical
density operator which is a weighted sum of state projectors, with the weights
having the properties of a probability distribution,

@=§mewL (4.1)

Here Py may be viewed as the probability of finding the system in the quan-
tum state |¢) and the sum goes over all possible or considered states. Clearly,
the Py being defined as probabilities have to satisfy the conditions

Py >0, %Plp =1 4.2)

In particular, a pure state |¢) can be easily represented by a density operator
by choosing the weights as Py = dypy. The density operator reduces then to the
projector =) (¢].

The expectation value of a physical observable represented by the corre-
sponding Hermitian operator O for the quantum state being described by a
density operator reads as

(0) =Y Py(p|Olyp) = Tr(00). (4.3)
P

From Eq. (4.3) we can see that when the system is prepared in a statistical mix-
ture of quantum states (4.1), obtaining the expectation value of an observable
is in general a two-fold procedure. Firstly the quantum-mechanical expec-
tation values of the observable O must be calculated for the states |¢) and
secondly these expectation values must be averaged according to the proba-
bilities Py in the usual (classical) way.

Using the density operator itself as the observable, O = §, we obtain from
Eq. (4.3) the special result

(@) = X PyPyl(w'¢) P, (4.4)
¥y’
where by using the relation |(|¢’)| <1 we may derive from (4.4) the inequal-
ity
() =Trg* <1. (4.5)

This inequality is in general regarded as a criterion for the statistical mixed-
ness of a quantum state. When Tr 9> = 1 we have a pure state, whereas with



4.1 The statistical density operator

decreasing value of this trace the state becomes more and more statistically
mixed. To show this in more detail, let us consider an orthogonal and com-
plete set of states |j), i.e.,

(li" Z il =1 (4.6)

By the use of this representation, the density operator may be written in the
form

a=Y 0Nl “.7)
i

where ¢;i = (j|0|j') are the matrix elements of the density operator in the cho-
sen representation, or in short, the density matrix. We can easily prove that
Eq. (4.3) may be rewritten as

ZQ;; '101f).- (4.8)

When the density operator ¢ corresponds to a pure quantum state without
any statistical mixedness, § =|¢) (¢|, the corresponding density matrix in the
representation of states |j) reads

i = (jlo) (¢lf')- 4.9)

From Eq. (4.8) (o= 0) in this case we obtain for the statistical mixedness

0" = Z\<J’I4>>|2|<J"I<i>>\2 =1, (4.10)
jd'

due to the fact that the probability of finding the value j for the given state
|¢p) is normalized to unity. In general one may observe that the moduli of the
off-diagonal elements are smaller for a statistical mixture than those for a pure
state, i.e., |ji| <./lpjlloj | for j#j', which leads then to Tr 02<1

As is well known, in the Schrodinger picture the state vector |(t)) obeys
the Schrodinger equation

dy)
in =g = Hly), (4.11)

where H is the Hamiltonian of the system under consideration. By consider-
ing the pure-state case § = |¢) (| it is obvious that the density operator then
obeys the following equation of motion:

= [H, . (4.12)
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The use of density operators is typically useful when dealing with a system
composed of interacting subsystems, where only one of the subsystems is of
interest. Let us consider, for example, two interacting systems, such as a radi-
ation field coupled to an atomic system, with Hamiltonian HA=H,+H,+Hin.
The Hilbert space of the total system is then the direct product of the Hilbert
spaces of the two subsystems, that is, when |j;) and |j,) are forming complete
sets of states of system 1 and 2, respectively, a complete set of states for the
combined system is given by

1, 72) = lj1)1j2)- (4.13)

The expectation values of an observable Oy (k=1,2) associated with only one
of the subsystems, say subsystem 1, is obtained using Eq. (4.8) as

(01) = Tr (010n), (4.14)
where the reduced density operator ¢1, which describes subsystem 1 alone, is
given by the trace with respect to subsystem 2,

01="Try 0 =) (j2l0lf2). (4.15)

J2

Note that, even when the overall system is in a pure quantum state, the sub-
systems, as represented by their reduced density operators, in general are not.
If the overall system is closed, i.e., isolated from its environment, the corre-
sponding density operator of the system will obey an equation of motion of
the type (4.12). However, the dynamics of a system which is interacting with
its environment, cannot in general be described by such a unitary time evolu-
tion.

4.2
Phase-space functions

Let O be an operator that may be a function of 4 and a*, O = f(a,4"), and let
us consider its expectation value when the system is described by the density
operator ¢,

(0) = (f(a,a")) =Tr[o f(a,a")]. (4.16)

To perform the trace, a set of complete quantum states has to be chosen. To ar-
rive at a phase-space description it is convenient to choose the coherent states
|a) as basis states. From Eq. (3.71) we obtain the coherent-state representation
of the density operator as

0= =5 [ & [ @pola,pla) @17)



4.2 Phase-space functions

where the density matrix in the coherent-state basis is given by

o(a, B) = («[6]B)- (4.18)

Inserting Eq. (4.17) into Eq. (4.16), we obtain the expectation value (f(a,a"))
in the form of

A 1 A
(Fla,a) = — [ & [ Epolw p)(pIf(@ah)a). (4.19)
By substituting 4, 4" +— &, a* we may arrive at classical statistics, where the
operator function which corresponds to the operator O will turn out to be a
function in the phase-space spanned by the complex number «,

O =f@aa") — 0= f(a,a*) = fla). (4.20)

In this case the expectation value of the quantity O is obtained by the usual
statistical averaging as

(O)a= [ PaPa(e) ), @21)

where the phase-space function Py(«) is the classical probability density of
observing the complex field amplitude a, which fully describes the (classical)
state of the system. The question arises as to whether or not the quantum-
mechanical expectation value (4.19) may be represented in a form similar to
that of classical theory, Eq. (4.21). As we shall see below, Eq. (4.19) can indeed
be rewritten in a form which formally looks like Eq. (4.21), provided that the
operator under study, O, is ordered in certain ways with respect to the oper-
ators 4, @*. However, the phase-space functions found in this way cannot be
viewed, in general, as being probability distribution functions.

4.2.1
Normal ordering: The P function

To arrive at one of these phase-space functions, let us assume that, by means
of the commutation relation [4,4%] =1, the operator O = f (a,a%) is put into
normal order. Normal order means in this context that in the resulting expres-
sion all the creation operators are positioned left of the annihilation operators.
That is, if f (N) (a, ﬁ*) is the resulting expression in normal order, we have the

equivalence
fla,a"y = fN(a,a"). (4.22)

Furthermore, we may now define the associated c-number function f(N) (¢) =
F™N)(a, a*) by substituting in f(N) (a,a") for the operators 4 and 4* the complex
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118 | 4 Bosonic systems in phase space

¢ numbers & and a*, respectively. Obviously, f(N)(a) is simply the diagonal
matrix element of f(a ( 4,a") with the coherent state |a):

FN (@) = (al fN (@, 8%)|a) = (2] f(,4%)]a). (4.23)

Having this c-number function at hand, we now intend to express the oper-
ator f(a,a") in terms of f(N)(a) and other suitably chosen normally ordered
operator functions. For this purpose, let us inspect the identity

= [ ot —p)rNp), (4.24)

where 6(a) is the usual two-dimensional Dirac § function for real and imagi-
nary parts of the argument, i.e., (x =a’+ia”),

S(a) =6(a)o(a") = # /dx/dy expli(a'y +a"x)], (4.25)

Substituting v = £+ (iy — x) /2, we may rewrite the delta function (4.25) in a
more convenient form, as an integral over the complex variable v,

S(a) = /d2'y exp(a®y —ay™) /dz'y exp(ay™ —a*y).  (4.26)

Inserting this expression for the delta function in Eq. (4.24), we obtain

V@) = = [ @6 [ PN epla—p)yr—@—pl). @27)

Going from the associated c-number function f(N)(a) back to the operator
function f (N) (a,a%),i.e., re-substituting a, a* +— 4,4 it, we see from Eq. (4.27)
that the operator f(N)(a,4") may be represented as

F@,t) = =5 [ [ FN(B) exp (@) exp [~ (a-p)r).
(4.28)

This substitution is allowed since, before replacing the ¢ numbers by opera-
tors, we have factored the exponential function in order to obtain a normally
ordered representation where the 4" are located left of the 4.

Next, we introduce an operator-valued version of the Dirac ¢ function in
straightforward generalization of Eq. (4.26),

§a-a) = = [ &6 expla® —a*)p - (1 - )], (429)
which may be also written as a Fourier transform of the displacement operator
(3.44),

5(a—a) = ! d’ B D(B) exp(ap* — a*B). (4.30)
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4.2 Phase-space functions

Applying the normal-ordering prescription A onto the displacement operator
we obtain!

ND(a) = :D(a): = el e, (4.31)

Using the relations (4.30) and (4.31), we may then rewrite Eq. (4.28) as

N

F(a,a") = FN)(a,a") / & fN ()N — a). (4.32)

We now take the quantum-mechanical expectation value of both sides of
Eq. (4.32) and obtain, on assuming that this operation and the integration can
be interchanged, the sought result:

(@) = (7M@) = [ PN (@) (), @33)

where the phase-space function P(N) () is the expectation value of the opera-
tor delta function in normal order,

PN (a) = (:6(a —a):). (4.34)

Although Eqs (4.21) and (4.33) bear a great resemblance, there are essential
differences between the two equations. Firstly, the c-number function f(N)(«)
in Eq. (4.33) is associated with the operator f(a,4") being transformed into its
equivalent normally ordered form. That is, the complex numbers « and a*
are substituted for the operators in the operator function f(N)(a,4%) and not
in the original form of the operator function f(a,4"). Secondly, in general,
the function P(N () cannot be regarded as a proper probability distribution
function: P(N) («) can attain negatlve values that are not interpretable as prob-
ability densities and furthermore PN (&) need not be a well-behaved function
[for reviews, see Klauder and Sudarshan (1968); Petina (1991)]. Notwithstand-
ing these facts, in any case the function p(MN) («) is normalized,

/ 2o PN() =1, (4.35)

which may readily be proved from Eq. (4.33) by choosing f(a,a%) =1. The
quantum-state representation based on the phase-space function P(N)(«)
is called the Glauber-Sudarshan representation [Glauber (1963); Sudarshan
(1963)], PN (&) being also called the P function, where a frequently used ab-
breviated notation is

P(a) = PN (a). (4.36)

1) The process of normal ordering as described by N is not to be con-
fused with a normally ordered, equivalent representation of an op-
erator, such as represented by the relation f(N)(,a")=f(a,a"). N is
not an equivalence operation, i.e., N f(4,4") # f(,a").
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4 Bosonic systems in phase space

The Glauber-Sudarshan representation is of special importance in the context
of photodetection where the appearing expectation values contain normally
ordered moments and correlations. Moreover, although the P function may be
an ill-behaving function, this distribution proves to be very useful for formal
derivations in connection with operator expectation values.

422
Anti-normal and symmetric ordering: The Q and the W function

The applicability of the concept of phase-space functions as outlined above,
is of course not restricted to the case of normal order. For example, if the
operator O can be put in anti-normal order by use of the commutator relation
[a,at]=1,0= f (A) (a,a%), we may introduce the associated c-number function
) () by substituting in f(4)(a,a") for the operators 4 and @t the ¢ numbers
« and a*, respectively. Performing manipulations analogous to those leading
to Eq. (4.28) now yields the corresponding expression in anti-normal order,

flaat) = = [ @6 [ &y fN) () expl—(a— p)y*] expl(a" — ). 437)

Hence, instead of the normally ordered delta operator we now use the anti-
normally ordered version,

Aba—a) = 10—t = — [ @B 1D rep(ep” —a'p),  ©39)
so that the anti-normally ordered displacement operator reads

D ()} = e 0 et'w, (4.39)
We then obtain in analogy with Eq. (4.32)

Fa,0) = [ da fO(w).A8@ - ), (4.40)
from which the relation for the expectation value is derived as

(Fla,a") = (FN @) = [ daP®a)f ). (4.41)

The phase-space function P(*)(a), which is called the Husimi Q function, is
the expectation value of the operator delta function in anti-normal order,

Q(a) = PW(a) = ($8(a — 2)1). (4.42)

On the other hand, taking the expectation value of the original operator
delta function as defined by Eq. (4.29) obviously yields the phase space func-
tion suitable for averaging symmetrically ordered quantities,

(fla,a") = (F9@,a") = [ &aPOe)f® ), (443)



4.2 Phase-space functions

where
W(a) = PO () = (§(a —a)) (4.44)

is called the Wigner function, and f (5)(a) is the c-number function associated
with the operator f(4,4") in symmetrical order. We will not give more details
here, but instead, in the following we consider the more general case of so-
called s ordering.

423
Parameterized phase-space functions

The phase-space functions considered above may be regarded as certain spe-
cial cases of an operator O being put in a chosen order [Cahill and Glauber
(1969); for a review, see also Pefina (1991)]. To generalize the concept of op-
erator ordering, we may start with the displacement operator and define its
s-ordered representation by

D(a;s) = D(tx)el“lzs/z, (4.45)
which implies that

D(a;s) :exp[%(s—s/)mﬂ D(a;s"). (4.46)
The case s=0 is then considered as symmetrical ordering, since we obtain the
original displacement operator,

D(a;0) = D(a). (4.47)

Moreover, comparing the expression (4.45) for the values s==+1 with Eqs (4.31)
and (4.39), we arrive at the following relations:

D(x;1) = ot g’ — :D(a):, (4.48)
D(w;—1) = e %" = +D(a) . (4.49)

From Eqgs (3.44)—(3.46) we see that choosing s=0, s=1 and s=—1 corresponds
to putting the displacement operator in symmetrical, normal and anti-normal
order, respectively. It should be pointed out that more general ordering pro-
cedures can be introduced, which unify s-ordering with other orderings such
as standard and anti-standard ordering [Agarwal and Wolf (1968)].2

Let us now assume that the operator O = (4, ") can be represented in any
s-order —1<s<1 as®

F(a,at) = /dzaf(a,-s)é(a — &), (4.50)
2) For a detailed treatment of these unified ordering methods, see
Agarwal and Wolf (1970).

3) Note that the value of s is not necessarily restricted to the interval
-1,...,1
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where we have defined via Eq. (4.45) the general s-ordered operator delta
function

5(a—a;s) = % / d?BD(B;s) exp(ap* — a*B) (4.51)

[for details about the existence of the representation (4.50), see Cahill and
Glauber (1969)]. Obviously, the c-number function f(«;s) associated with
the operator f(a,4") in the chosen order, reduces in the special cases
s=0,+1 to the familiar expressions f(«;0) = &) (a), f(x;1) = fN)(«) and
f(a; =1)=f®)(«). With the help of Eq. (4.50) the expectation value of an ar-
bitrary operator O= f(4,a") may now be written as

(0) = (f(a,") = [ dn P(es)f(es3), @52)
where the s-parameterized phase-space function P(«;s) is defined as*
P(a;s) = (6(a — a;s)). (4.53)

It is often useful to represent the s-ordered operator delta function in a
somewhat different form. Expressing D(;s) in terms of D(«;s’) in Eq. (4.51)
according to Eq. (4.46) and applying, with respect to D(«;s’), the inverse of
Eq. (4.51), we may write

5(a—w;s) = %/dzﬁ exp[zxﬁ* — "B+ (s — s’)\/ﬂlz] D(B;s')
%/dzﬁ exp [aﬁ* —a* B+ %(S — S/)\ﬁﬂ

X /dz'y exp(By* — B y)d(a —v;¢'). (4.54)
For s <s' the integration over 8 can be performed? to obtain
5(A o) — 2 2 2|0‘_7|2 Sra Lo
0(a—w;s) = o /d 'yexp< TS o(a—y;s"). (4.55)

For s’ =1 the operator §(4 — ;1) is the normally ordered form of the delta-
function operator, and therefore the <y integration yields

coa . 20" —a*)(a—a)]

5(11 — 06,5) = m . exp {—T iy (456)
which with the help of Eqs (3.47) and (3.48) may be rewritten in the form

(4 qe) — 2 27(a) ]

5(&—0&,S)—m .eXp|: 1_s:|., (457)

4) Recall that W(x) =P (a) = P(s;0), P(a) = PN (x) = P(a;1) and
Qa)=PW(a)=P(a;-1).
5) Note that the more general condition is Re (s —s") <0
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with the displaced number operator being defined as

A

a(a) = D(a)aD*(a). (4.58)

Equation (4.57) can be further evaluated to obtain

5(a—w;s) = _2 Lexp | = s+l ﬁ(a) exp[—7(a)] :
(1 =)
B = (s+1 [ (a)]" . _
1_5 7; (s—l) - exp[—#(a)] :
_ v (s+1 Al
1_5 E(s—l) (a) pore D"(«). (4.59)
Since |(n|a)|? as given by Eq. (3.60) is the c-number function associated with

|n) (n| in normal order, we find that
s
-l e "= n)(n, (4.60)

and Eq. (4.59) can be rewritten as

a9 = = T (35 ) D@ nld'@) (@61)
equivalently
8(a— a;s) = ﬁfm) <§’_L1) D (a). 4.62)

For s=0 the s-ordered operator delta function (42 —a;0) reduces to the ordi-
nary (i. e., symmetrically ordered) operator delta function 4(4—«) defined by
Eq. (4.29), and from Eq. (4.62) it then follows that

5(a—a) =271 'D(a)(=1)"D (&) = 227 1(=1)"), (4.63)

That is, the operator delta function is given (apart from the factor 2/7) by the
displaced parity operator and the Wigner function is simply the expectation
value of that operator:

W(a) = P(a;0) = 270~ YD (a)(—1)"DF(0)) = 27 1 (-1)" @), (4.64)

Equation (4.64) reveals that the Wigner function cannot be regarded as a prob-
ability distribution in general, because it may attain negative values,

277 <W(a) <277 L (4.65)
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For s=—1 Eq. (4.61) reduces to®
8(a—w;—1) = w1 a) (). (4.66)

Hence, the Q function is given (apart from the factor 7~1) by the c-number
function associated with the density operator in normal order,

Q(a) =P(a;-1) = n’l(w\@hx), (4.67)
from which it follows that
0<Q(a) <m L (4.68)

It is worth noting that, although the Q function does not allow an interpreta-
tion as a probability distribution of the complex amplitude « in the sense of
classical theory, it has all the properties of a probability distribution. As can
be seen from Eq. (4.61), for s =1 the corresponding operator delta function
5(a — ;1) is not bounded, and therefore the P function P(«) = P(w;1) is not
necessarily a well-behaved phase-space function.

It should be noted that Eq. (4.54) can be used to express the function P(«;s),
Eq. (4.53), in terms of another function P(«;s’):

P(a;5) = = [ expup®—a*p-h(s—IBP] [Py exp(pr B9 P(:9).

(4.69)
For s <’ (or Res <Res’) the integration over B can again be performed to
obtain
2 2]a —[?
Pla:s) — 20 P/ Ly 47
(a;5) (5 —3) /d'y (%S)eXp( - (4.70)

In the opposite case when s’ <s (or Re s’ <Res), the integration over 7 should
be done first in Eq. (4.69) in order to avoid having to deal with singular ex-
pressions.

4.3
Operator expansion in phase space

Equation (4.50) can be viewed as an expansion of an operator f(&,4") in terms
of the generalized projectors 6(4 — &;s). Whereas for s =0, +1 it is clear, in
principle, how to obtain the associated c-number functions f(«;s), for arbi-
trary values of s we still require a recipe.

6) Note that for s =—1, from comparison of Eq. (4.57) and (4.66), it
follows that |a) (a| = :exp[—7(a)]:.



4.3 Operator expansion in phase space

4.3.1
Orthogonalization relations

For the purpose of deriving such a prescription we may consider the following
relation obtained by taking the trace of Eq. (4.50) multiplied by 6(2—g; —s),

Tr[f(a,a")é(a — B; —s)] = /dzocf(zx;s) Tr[6(a — w;8)8(a — B; —s)]. (4.71)

To obtain the trace on the right-hand side of Eq. (4.71) we first calculate the
trace (via Fourier transformation) contained therein over the displacement op-
erators. Using Eqs (3.53) and (4.45) we may write

(a2 = |BP)] Tr[D@)D(B)

s(Jaf2 = |B[?) + i Im(p*)| Te[D(a + p)).
(4.72)

Tr[D(a;8)D(B; —s)] = exp[

Nl N—=

= exp[

We calculate the trace of the displacement operator using the coherent-state
basis and applying Eqs (3.54) and (4.26):

D) = — [ @ (BID@)]A)
= ol %/dZﬁ exp(ap* — a*B) = 76(a). 4.73)

Hence, Eq. (4.72) takes the form of

Tr[D(a; ) D(B; —s)] = m6(a + B), (4.74)
and combining Eqs (4.51) and (4.74) yields

Te[6(4 — a;5)8(a — B; —s)] = 7t 1o(a — B). (4.75)
Note that Eq. (4.73) implies that

Tr[d(a — a;s)] = L. (4.76)

Inserting the orthogonalization relation (4.75) into Eq. (4.71), we see that
f(a;s) may be represented as

f(a;s) = nTe[f(a,a")é(a — a; —s)]. (4.77)

Equation (4.77) may be viewed as the sought prescription for calculating the
c-number function f(«;s) associated with the operator f(a,4%) in s order from
f(a,a") via the s-ordered delta operator. Substitution of the expression (4.77)
into Eq. (4.50) yields the operator expansion in the phase space

f(a,at) = n/dza Tr[f(a,47)6(a — a; —s)]6(a — a;5). (4.78)
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Equivalently, we may expand f(&,a") in terms of the s-ordered displacement
operator D(a;s). Recalling Eq. (4.51), it is not difficult to see that Eq. (4.78) can
be rewritten as

Fa,at) = %/d% Te[f (2,21 D(—a; —s)| D(a; s). (4.79)

432
The density operator in phase space

If we now identify in Eq. (4.78) [together with Eq. (4.77)] the operator f(a,a")
with the density operator ¢, we obtain the following representation of the den-
sity operator:

0= /dza o0(w;8)8(a — a;s), (4.80)

where the c-number function associated with the density operator in s order
reads

o(w;s) = mTr[0d(a — w; —s)] = m(8(a — a; —s)). (4.81)

Comparing Eq. (4.81) with (4.53), we see that the phase-space function P(«;s)
is (apart from the factor 77~ 1) identical to o(&; —s),

P(a;s) = m to(w; —s). (4.82)

Therefore, the density operator itself can be represented via Eq. (4.80) as
(5——9)

0= 71/ d?a P(a;s)6(a — a; —s). (4.83)

Note that from Eq. (4.83) the phase-space distribution P(«;s) may be seen ex-
plicitly to be normalized to unity,

/ d2aP(a;s) = 1, (4.84)

because of Tr(¢) =1 and Eq. (4.76).

In particular, from Eqs (4.52) and (4.82) we see that in calculating the expec-
tation value of an operator O= f (4, a") by “averaging” the c-number function
f(a;1)=fMN)(a, a*), which is associated with the operator f(a,a") put in nor-
mal order, the required phase-space function P(«;1)=P(«) is determined by
the c-number function ¢(«; —1) associated with the density operator ¢ put in
anti-normal order (Glauber-Sudarshan representation), and vice versa. Only
for symmetrical order (s =0) are the c-number functions f(«;0) and o(«;0)
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A

associated with the operators f(4,a%) and @, respectively, both put into sym-
metrical order (Wigner representation).

Since expectation values of normally ordered operators are of particular im-
portance in the context of quantities observable in optical photodetection ex-
periments (Chapter 6), the Glauber-Sudarshan representation

0= n/dzzx P(a;1)0(a — a; —1) (4.85)

is often used in quantum optics. Substitution of the expression (4.66) into
Eq. (4.85) yields [P(a)=P(a;1)]

0= /dsz(a)lth\, (4.86)

which is conceptually different from the straightforward representation of the
density operator in terms of coherent states, as given in Eq. (4.17). The expec-

tation value of an operator O = f(4,4") may then be written with the help of
Eq. (4.86) as

(F(a,a") = [ & P(a) Tellw) (ol £(,8")
= [ &aP(@)(al (0,8 ), (4.87)
from which we also immediately recognize via Eq. (4.52) the result (4.23):

fla;1) = (alf(a,a")|w). (4.88)

As already mentioned, P(«) can be highly singular. In particular, in the case
of nonclassical states (Chapter 8), such as for example squeezed states, the
calculation of P(«) may also lead to expressions that are not well behaved and
are hard to interpret. However, using the phase-space representation defined
by ) (A—uw;1),

o=n /dzzx P(w; —1)8(6 — a;1), (4.89)

leads, according to Eq. (4.67), to the well-behaved Q function, Q(«)=P(x, —1)
= 7t~ (a|0|a), which is suitable for the calculation of expectation values of
anti-normally ordered operators.

We therefore observe a trade-off for the representation of the density oper-
ator in terms of phase-space functions that correspond to normal and anti-
normal order. Either the phase-space function is well-behaved (Husimi Q
function) and the associated delta operator may be problematic, or the phase-
space function may be ill-behaved (Glauber-Sudarshan P function), whereas
the delta operator is a simple projector on a coherent state. We note, however,
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that the ill-behaved and possibly singular expression do not formally repre-
sent serious obstacles for most derivations. Only concrete evaluations may
turn out to be rather cumbersome.

The formal analogy between phase-space functions and classical statistics
encourages the introduction of a formalism similar to that used in the usual
probability theory. In particular, it is useful to introduce characteristic (gener-
ating) functions, by defining

®(w;5) = (D(a;s)). (4.90)

According to Eqs (4.46) and (4.90), ®(«; s) and ®(a; ) are related to each other
by

D(a;s) = exp [%(s - s/)|ac|2} D(a;8"). (4.91)

Equations (4.51), (4.53) and (4.90) reveal that, as usual, the characteristic func-
tion is the Fourier transform of the phase-space function, that is,

Da;s) = [ BP(Bis) exp(ap’ —a'B), (4.92)

and vice versa,

P(a;s) = % /d2,8 D(B;s) exp(af” —a”B). (4.93)

From the operator expansion (4.79) it can be seen that the characteristic func-
tion ®(«; s) also carries the full information about the quantum state. As in or-
dinary probability theory, ®(«; s) allows one to generate the various s-ordered

moments (ata! )s

thol 2, ik A,

ital)s = [ aatal P(a;s) = ®(B; : 4.94

(@)= [ @uatallass) = Soes s @8l @94)
Here the s-ordered product {a**a'}; is defined by

ok 9
athkaly .
{a “}S__aakia(fa*)l D(IX’S)‘“:O' (4.95)

In Eq. (4.95) expressing D(x; s) in terms of D(x;s’) according to Eq. (4.46) and
differentiating, we may relate the s-ordered operator product to an s’-ordered
operator product. After some algebra we derive

min(m,n) r k
{atmany, = ! (’:) (’Z) (s > 5) {atm—kan=ky,. (4.96)
0

k=
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The generalization of the concept of phase-space representation to multi-
mode systems is straightforward. An extension of this concept to other than
4 and 4" as basic operators is outlined in Section 5.2.2, in which the problem
of formulating equations of motion (of Fokker—Planck type) for phase-space
functions is studied. Moreover, we note that problems arising from singular
behavior of the P function in the study of nonclassical states may be avoided
by using generalized P representations [Drummond and Gardiner (1980); Gar-
diner (1983, 1991)],

6= [ dn(a,p) Al B)P(a, B) @.97)
where the operator A(a, 8) is given by
A _ (|

and dp(w, B) is the integration measure defining different classes of possible
representations, with D being the domain of integration. In particular, it can
be shown that the representation with measure

du(a, ) = d>a d?B (4.99)

and integration over the whole complex plane always exists for a physical
density operator and that P(«, §) can always be chosen positive, in which case
it is called the positive P representation:

P&, B) = 7= exp(—Ha — B1%) (2(a+ ) lal (a + B)). (4.100)

4.3.3
Some elementary examples

To illustrate the theory, let us consider the Glauber-Sudarshan representation
for some elementary quantum states, as introduced in Chapter 3. In the case
of a coherent state |ag) we may immediately formulate the density operator
as

0 = lao){aol = [ das(a o) ) al. (4.101)

Comparing this equation with Eq. (4.86), we can obviously see that the
Glauber-Sudarshan P function is

P(a) = 6(a — ap). (4.102)

From the point of view of classical statistics this function appears to have no
fluctuations. In quantum theory such an interpretation is of course wrong.
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From Sec. 3.2 we know that a system in a coherent state is indeed noisy, so
that the appearance of a delta function in Eq. (4.102) should not mislead one
to associate with it a deterministic behavior of the quantum system. In fact,
this is only an effect of the chosen operator order, since other distributions
with s <1 reveal a nonvanishing variance around the value xy. We may fur-
nish this, for example, by calculating the variance of the excitation number
fi=a%a. To apply the Glauber-Sudarshan representation it is necessary to put
the operator (Af)? in normal order,

(An)? = (a*a)* — (a%a)? = a4 +a'a — (a%a)?, (4.103)

The evaluation of the expectation value of Eq. (4.103) is then performed as
follows:

(80 = [ Pap(a)(laf*+lo) - | [ @ P(e)uf]

which with P(x) = d(x — ag) [Eq. (4.102)] just leads to the familiar result
((A)?)=(A)=|ag|* Clearly, the normally ordered variance (: (Af)?:), and
generally any normally ordered moment of a mean-value deviation, vanishes
in the case of the ¢ peaked distribution function.

Next, let us consider a thermal state. In the case of radiation a thermal
state serves as an example of so-called chaotic light. ~As is well known, if a
harmonic oscillator of frequency w is in thermal equilibrium with a heat bath
of temperature T, the density operator § may be written in the form

. expl-hw/(ksT)] 1 (nth—l—l)_ﬁ
€= Tr{exp|—hwi/(kgT)]}  nm+1\ nm ’

2
, (4.104)

(4.105)

where the mean number of thermal photons, ny, = (), is given by the familiar
formula

-1
Ny = [exp <IZ—WT> — 1] . (4.106)

Note that for a thermal state the mean coherent amplitude vanishes: (4)=0.
To calculate P(«), we recall that P(«) is determined by the c-number func-
tion o(«; —1) associated with the density operator § put in anti-normal order
[Eq. (4.82) with s=1]:

P(a) = to(a; —1). (4.107)

To put ¢ in anti-normal order, we note that, after a straightforward but some-
what lengthy calculation [using, e.g., Eq. (4.96)], the anti-normally ordered

form of an exponential operator exp(—zi'd) may be written as

. (1 _ % k
e = 3 1O gtk (4.108)
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From Eqgs (4.105) and (4.108) the anti-normally ordered form of ¢ is then found
to be

akatk

(4.109)

1 [ee]
so that we obtain for the associated c-number function

s k
SR A ) o

Mth Mth

th

Hence in this case the P function is a well-behaved Gaussian:

2
P(a) = ”%th exp(—%) . (4.111)

In the case of radiation one may also think of the more general situation
where the thermal light of mean photon number ny, is superimposed on co-
herent light of (complex) amplitude &, so that (#1) =ng, + || and (2) =an #0.
The superposition of the thermal state by a coherent one may be represented
by a displacement of the distribution in phase space by the coherent ampli-
tude ag. The displaced P function is then obtained as

P(a) = ! exp(—M>, (4.112)

Tthth Nth

which obviously corresponds to the density operator

At A
oA 1 ng +1\ "1
0 = D(ao) ( th ) D (ap)

g + 1 Mih
1 Nen + 1 (‘1 7%)(&,“0)
= ( t ) ) (4.113)
g + 1 Nih

Note that, for coherent light, ny, =0, Eq. (4.112) reduces to the P function in
Eq. (4.102), whereas for chaotic light, oy =0, it reduces to Eq. (4.111). The
superposition of chaotic light with coherent light may be viewed as a simple
model for characterizing the properties of single-mode laser light.

The above P functions exhibit all the properties of ordinary probability dis-
tribution functions. The only difference from classical statistics is that they
apply to the calculation of normally ordered expectation values only. Since
negative values of normally ordered variances, which are related to negative
values of P(«), indicate nonclassical states (Chapter 8), quantum states such
as coherent states or thermal states with a well-behaved P function may there-
fore be said to have a classical analog.
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Fig. 4.1 Phase-space functions for the number state |n=4). Part (a)
shows the Q function and part (b) the Wigner function, which reveals
additional oscillatory and partially negative contributions.

As an example of a typical quantum state having no classical analog let us
consider a number state

0= |n){(n|. (4.114)
To calculate the P function, we apply Eq. (4.53) directly and use Eq. (4.51) to
obtain

1 IR

P(a) = — [ 2 exp(ap’ — & B)(nlD(B;1)n), (4.115)

where (n|D(B;1)|n) can be calculated as
A it g o\ (—1)k
D) = (e e = 35 (1) G2 (@.116)
k=0 :

Inserting this result into Eq. (4.115), reproducing the factors |8|** by deriva-
tives with respect to « and a* and performing the remaining integration, we
obtain the P function as

n 7\ 1 ak ak
P(a) = k;) (k) T 5k 3k (%) (4.117)

As expected, P(«) is highly singular and bears no resemblance to a proper
probability distribution function. Nevertheless, it may be used to calculate
normally ordered expectation values.

The Wigner function W(«) can be obtained from Eq. (4.115) by replacing
therein D(B;1) with D(8) = D(B;0) [cf. Eqs (4.51) and (4.53)]. Recalling
Eq. (4.45), we may therefore write

W(a) = % [ B exp(apt B — 316P) (1D (B 1) ) (4.118)
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Fig. 4.2 Phase-space functions for a superposition of two coherent
states |¢) =N(|a) + | —a)) with « =2. Compared with the Q function

(a) the Wigner function (b) shows negative values between the peaks of
the two coherent states, which are signatures of their mutual quantum
interference.

Fig. 4.3 Wigner function for a squeezed ground state, i.e., |8, &) where
B =0, and the squeezing parameter is { =0.5.

Substituting the expansion as given by Eq. (4.116) for (n|D(B;1)|n), we can
calculate the B-integral to obtain

W(a) = 2771 (~1)"e21*L,, (4]a]?) (4.119)

(Ly(x) is the Laguerre polynomial). Since L,(4|a|?) can take positive and
negative values, the Wigner function — although well behaved — takes pos-
itive and negative values as well. As already mentioned, the Q function,
Q(a)=P(«; —1), is well behaved and positive in any case. In the above exam-
ple, with the system being in a number state, we easily find that

Q(a) = — (aln)l?

Examples of the Q function for a number state and a superposition of two
coherent states are shown in Figs 4.1(a) and 4.2(a), respectively. Their Wigner

_ L

o (4.120)
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function counterparts are shown in Fig. 4.1(b) for the number state and in
Fig. 4.2(b) for the coherent-state superposition. It is clearly observable that, in
general, the Wigner function reveals sharper structures as compared with the
Q function. Moreover, negative values occur in the Wigner function, being a
signature of quantum interference effects. The Wigner function of a squeezed

ground state is shown in Fig. 4.3.
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